產(chǎn)品目錄 PRODUCT
- 殘磁儀係列
- 顯微鏡係列
- 投影儀、影像儀係列
- 殘磁測量儀
- 退磁器
- 體視顯微鏡
- 實體顯微鏡
- 金相顯微鏡
- 偏光顯微鏡
- 生物顯微鏡
- 熒光顯微鏡
- 倒置顯微鏡
- 工具顯微鏡
- 讀數(shù)顯微鏡
- 金相試驗設(shè)備
- 測量投影儀
- 影像測量儀
- 測長儀/測高儀
- 三坐標測量機
- 公司軟件係列
- 光譜儀係列
- 驗鋼鏡/看譜鏡
- 粗糙度儀
- 測厚儀係列
- 超聲波探傷儀
- 裡氏硬度計
- 便攜式硬度計
- 臺式硬度計
- 標準硬度塊
- 推拉力計
- 溫濕度計
- 紅外測溫儀
- 水份測試儀
- 風速儀/轉(zhuǎn)速表
- 噪音計/照度計
- 秒表/濃度計
- 扭力扳手
- 角度量儀
- 雙色電刻機
- 光學平晶
- 磁性表座
- 量具檢具
- 標準量塊
- 精密派尺
- 工量具係列
- 二手儀器設(shè)備區(qū)
- 山特UPS不間斷電源
容器組件
金屬所製備出能全譜吸收可見光的紅色二氧化鈦光催化材料
日期:2025-06-08 10:32
瀏覽次數(shù):1160
摘要:
金屬所製備出能全譜吸收可見光的紅色二氧化鈦光催化材料
光催化可實現(xiàn)太陽能到化學能的轉(zhuǎn)化(如光催化分解水製氫),是獲得新能源的一個重要途徑。發(fā)展可有效吸收可見光(波長為400-700nm)的光催化材料是實現(xiàn)高效太陽能光催化轉(zhuǎn)化的前提,然而多數(shù)穩(wěn)定的光催化材料的可見光吸收低。摻雜能夠縮小光催化材料的帶隙,是增加光催化材料可見光吸收的基本手段。銳鈦礦TiO2是研究為廣泛的光催化材料,目前利用摻雜手段在一定程度上增加了該材料的可見光吸收,但仍無法實現(xiàn)全譜強吸收。
光催化可實現(xiàn)太陽能到化學能的轉(zhuǎn)化(如光催化分解水製氫),是獲得新能源的一個重要途徑。發(fā)展可有效吸收可見光(波長為400-700nm)的光催化材料是實現(xiàn)高效太陽能光催化轉(zhuǎn)化的前提,然而多數(shù)穩(wěn)定的光催化材料的可見光吸收低。摻雜能夠縮小光催化材料的帶隙,是增加光催化材料可見光吸收的基本手段。銳鈦礦TiO2是研究為廣泛的光催化材料,目前利用摻雜手段在一定程度上增加了該材料的可見光吸收,但仍無法實現(xiàn)全譜強吸收。
2004年以來,中科院金屬研究所沈陽材料科學國家(聯(lián)合)實驗室一直致力於解決寬帶隙光催化材料的可見光全譜強吸收的難題。前期的係列研究揭示,摻雜原子的空間分布是決定摻雜能否縮小帶隙的本質(zhì)因素,即表麵摻雜隻能在帶隙中引入局域化能級,體相摻雜可縮小帶隙。同時,提出利用層狀結(jié)構(gòu)來實現(xiàn)摻雜原子在體相的均相分布的思路,增加光催化材料的可見光吸收。然而,如何在非層狀結(jié)構(gòu)材料如TiO2中實現(xiàn)摻雜原子的體相摻雜一直未獲突破。
近,該實驗室提出利用間隙原子弱化金屬原子與氧(M-O)的鍵合實現(xiàn)替代晶格氧的摻雜原子進入體相的新機製,獲得了梯度摻雜的銳鈦礦TiO2,實現(xiàn)了可見光全譜強吸收,將TiO2光電解水產(chǎn)氫的活性光響應(yīng)範圍拓展至700nm。
摻雜陰離子難以進入金屬氧化物體相本質(zhì)上是由M-O鍵的高鍵能以及摻雜離子與替代晶格離子間的電荷差異造成的。研究人員通過先期發(fā)展的“摻雜劑與前軀體合而為一”的特色製備思路,以TiB2晶體為前驅(qū)體,通過水熱及後續(xù)的熱處理過程獲得了間隙硼摻雜的銳鈦礦TiO2微米球,並且硼在從球表麵至體相厚約50nm的範圍內(nèi)呈現(xiàn)梯度分布。理論研究表明,間隙Bσ (σ ≤ 3)離子可有效弱化周圍的Ti-O鍵,使得N替代弱化後的Ti-O鍵的晶格氧所需的能量顯著降低,且間隙Bσ 的存在提高了N摻雜TiO2的穩(wěn)定性。實驗發(fā)現(xiàn),在氨氣氣氛下熱處理梯度間隙Bσ 摻雜的銳鈦礦TiO2,不僅N3-可有效替代晶格氧,而且N3-的空間分布與間隙Bσ 保持一致,呈現(xiàn)類似的梯度分布,表明間隙Bσ 對N摻雜的空間分布起到了關(guān)鍵的導向作用。其根源在於Bσ 對周圍的Ti-O鍵的弱化,使得N3-選擇性替代體相中被弱化的Ti-O鍵中的氧。同時,間隙Bσ 貢獻出的額外電子可有效補償N3-與O2-之間的電荷差異。
研究獲得的B/N梯度共摻雜銳鈦礦TiO2材料呈現(xiàn)出獨特的紅色(圖a),在可見光全譜範圍內(nèi)具有高的吸光率(圖b)。光催化性能研究表明,此材料的光電解水產(chǎn)氫活性響應(yīng)範圍接近700nm。該結(jié)果預示有可能利用TiO2基光催化材料來實現(xiàn)高效可見光分解水製氫。
該工作為如何基於摻雜實現(xiàn)寬帶隙光催化材料的可見光吸收提供了一種新思路,可用於發(fā)展高性能可見光光催化材料。研究結(jié)果已發(fā)表在Adv. Funct. Mater.(2012, 22, 3233-3238)、Energy & Environmental Science(2012, DOI:10.1039/C2EE22930G)。
該工作得到了國家自然科學基金委重大研究項目、科技部973項目和中科院“太陽能行動計劃”的資助。www.bz-xa.com www.bjbfsh.cn